A Common Data Model for the standardization of intensive care unit (ICU) medication features in artificial intelligence (AI) applications

Author:

Sikora Andrea,Keats Kelli,Murphy David J.,Devlin John W.,Smith Susan E.,Murray Brian,Buckley Mitchell S.,Rowe Sandra,Coppiano Lindsey,Kamaleswaran Rishikesan

Abstract

AbstractObjectiveCommon Data Models provide a standard means of describing data for artificial intelligence (AI) applications, but this process has never been undertaken for medications used in the intensive care unit (ICU). We sought to develop a Common Data Model (CDM) for ICU medications to standardize the medication features needed to support future ICU AI efforts.Materials and MethodsA 9-member, multi-professional team of ICU clinicians and AI experts conducted a 5-round modified Delphi process employing conference calls, web-based communication, and electronic surveys to define the most important medication features for AI efforts. Candidate ICU medication features were generated through group discussion and then independently scored by each team member based on relevance to ICU clinical decision-making and feasibility for collection and coding. A key consideration was to ensure the final ontology both distinguished unique medications and met Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles.ResultsUsing a list of 889 ICU medications, the team initially generated 106 different medication features, and 71 were ranked as being core features for the CDM. Through this process, 106 medication features were assigned to two key feature domains: drug product-related (n=43) and clinical practice-related (n=63). Each feature included a standardized definition and suggested response values housed in the electronic data library. This CDM for ICU medications is available online.DiscussionThe CDM for ICU medications represents an important first step for the research community focused on exploring how AI can improve patient outcomes and will require ongoing engagement and refinement.Lay SummaryMedication data pose a unique challenge for interpretation by artificial intelligence (AI) because of the alphanumerical combinations (e.g., ibuprofen 200mg every 4 hours) and because of the technical detail associated with drug prescriptions (e.g., ibuprofen 200mg and acetaminophen 325mg are both starting doses and round tablet sizes, so it would be incorrect for the machine to view 325mg as ‘more’ than 200mg). Because AI has great potential to improve the safety and efficacy of medication use, a common data model for ICU medications (ICURx) is proposed here to overcome these challenges and support AI efforts in medication analysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3