Smoking-informed methylation and expression QTLs in human brain and colocalization with smoking-associated genetic loci

Author:

Carnes Megan UlmerORCID,Quach Bryan C.ORCID,Zhou Linran,Han ShizhongORCID,Tao Ran,Mandal Meisha,Deep-Soboslay Amy,Marks Jesse A.ORCID,Page Grier P.ORCID,Maher Brion S.ORCID,Jaffe Andrew E.ORCID,Won HyejungORCID,Bierut Laura J.ORCID,Hyde Thomas M.,Kleinman Joel E.ORCID,Johnson Eric O.ORCID,Hancock Dana B.ORCID

Abstract

AbstractSmoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identifycis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping toNUDT12,FAM53B,RNF39, andADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containingMUSTIN1andITIH4colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3