Abstract
AbstractUrinary tract infection (UTI) is a common disorder. Its diagnosis can be made by microscopic examination of voided urine for cellular markers of infection. This manual technique is technically difficult, time-consuming and prone to inter-observer errors. The application of computer vision to this domain has been slow due to the lack of a clinical image dataset from UTI patients. We present an open dataset containing 300 images and 3,562 manually annotated urinary cells labelled into seven classes of clinically significant cell types. It is an enriched dataset acquired from the unstained and untreated urine of patients with symptomatic UTI using a simple imaging system. We demonstrate that this dataset can be used to train a Patch U-Net, a novel deep learning architecture with a random patch generator to recognise urinary cells. Our hope is that with this dataset UTI diagnosis will be made possible in nearly all clinical settings by using a simple imaging system which leverages advanced machine learning techniques.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献