ssREAD: A Single-cell and Spatial RNA-seq Database for Alzheimer’s Disease

Author:

Wang CankunORCID,McNutt MeganORCID,Ma Anjun,Fu HongjunORCID,Ma QinORCID

Abstract

AbstractAlzheimer’s Disease (AD) is a neurodegenerative malady predominantly affecting the elderly and exhibits its debilitating effects on a dementia-prone population. Recently, the advent of innovative technologies, such as single-cell and single-nucleus RNA-sequencing (scRNA-seq & snRNA-seq) and spatial transcriptomics (ST), has reformed our investigative approaches toward comprehending AD’s neuropathological intricacies and underpinning regulatory mechanisms, encompassing sub-cellular, cellular, and spatial dimensions. In light of the overwhelming proliferation of single-cell and ST data associated with AD, the imperative for a comprehensive, user-friendly database that addresses the scientific community’s analytical demands has never been more paramount. Introduced initially in 2020, scREAD presented itself as a pioneering repository that systematized publicly available scRNA-seq and snRNA-seq datasets derived from post-mortem human brain tissues and mouse models mirroring AD pathology. Here, we introduce ssREAD, a substantial upgrade over scREAD, enriching the platform with a broader spectrum of datasets, an optimized analytical pipeline, and enhanced usability and visibility. Specifically, ssREAD amalgamates an impressive portfolio of over 189 datasets extracted from 35 distinct AD-related scRNA-seq and snRNA-seq studies, encompassing a staggering 2,572,355 cells. In addition, we have diligently curated and archived 300 ST datasets, originating from 12 human and mouse brain studies, which include two focused on AD and ten control studies. Every dataset within our repository is meticulously annotated, bearing critical identifiers including species, gender, brain region, disease/control status, age, and AD stages. Besides the collection of above datasets in ssREAD, it delivers an exhaustive analysis suite offering cell clustering and annotation, inference of differentially expressed and spatially variable genes, identification of cell-type-specific marker genes and regulons, and spot deconvolution for integrative analysis of ST and scRNA-seq & snRNA-seq data from public domains. All these resources are freely accessible through a user-friendly, consolidated web portal available athttps://bmblx.bmi.osumc.edu/ssread/.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3