Timing and location of speech errors induced by direct cortical stimulation

Author:

Kabakoff HeatherORCID,Yu Leyao,Friedman DanielORCID,Dugan PatriciaORCID,Doyle Werner KORCID,Devinsky OrrinORCID,Flinker AdeenORCID

Abstract

AbstractCortical regions supporting speech production are commonly established using neuroimaging techniques in both research and clinical settings. However, for neurosurgical purposes, structural function is routinely mapped peri-operatively using direct electrocortical stimulation. While this method is the gold standard for identification of eloquent cortical regions to preserve in neurosurgical patients, there is lack of specificity of the actual underlying cognitive processes being interrupted. To address this, we propose mapping the temporal dynamics of speech arrest across peri-sylvian cortices by quantifying the latency between stimulation and speech deficits. In doing so, we are able to substantiate hypotheses about distinct region-specific functional roles (e.g., planning versus motor execution). In this retrospective observational study, we analyzed 20 patients (12 female; age range 14-43) with refractory epilepsy who underwent continuous extra-operative intracranial EEG monitoring of an automatic speech task during clinical bedside language mapping. Latency to speech arrest was calculated as time from stimulation onset to speech arrest onset, controlling for individual speech rate.Most instances of motor-based arrest (87.5% of 96 instances) were in sensorimotor cortex with mid-range latencies to speech arrest with a distributional peak at 0.47 seconds. Speech arrest occurred in numerous regions, with relatively short latencies in supramarginal gyrus (0.46 seconds), superior temporal gyrus (0.51 seconds), and middle temporal gyrus (0.54 seconds), followed by relatively long latencies in sensorimotor cortex (0.72 seconds) and especially long latencies in inferior frontal gyrus (0.95 seconds). Nonparametric testing for speech arrest revealed that region predicted latency; latencies in supramarginal gyrus and in superior temporal gyrus were shorter than in sensorimotor cortex and in inferior frontal gyrus. Sensorimotor cortex is primarily responsible for motor-based arrest. Latencies to speech arrest in supramarginal gyrus and superior temporal gyrus (and to a lesser extent middle temporal gyrus) align with latencies to motor-based arrest in sensorimotor cortex. This pattern of relatively quick cessation of speech suggests that stimulating these regions interferes with the outgoing motor execution. In contrast, the latencies to speech arrest in inferior frontal gyrus and in ventral regions of sensorimotor cortex were significantly longer than those in temporoparietal regions. Longer latencies in the more frontal areas (including inferior frontal gyrus and ventral areas of precentral gyrus and postcentral gyrus) suggest that stimulating these areas interrupts a higher-level speech production process involved in planning. These results implicate the ventral specialization of sensorimotor cortex (including both precentral and postcentral gyri) for speech planning above and beyond motor execution.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Penfield W , Roberts L . Speech and Brain Mechanisms. Princeton University Press; 1959.

2. Contemporary model of language organization: an overview for neurosurgeons

3. Cortical Language Mapping in Epilepsy: A Critical Review

4. An extraoperative functional atlas based on electrocortical stimulation mapping;J Clin Neurophysiol,2021

5. Three- and four-dimensional mapping of speech and language in patients with epilepsy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3