Spatiospectral image processing workflow considerations for advanced MR spectroscopy of the brain

Author:

Cai Leon Y.ORCID,Del Tufo Stephanie N.,Barquero Laura,D’Archangel Micah,Sachs Lanier,Cutting Laurie E.,Glaser Nicole,Ghetti SimonaORCID,Jaser Sarah S.,Anderson Adam W.,Jordan Lori C.,Landman Bennett A.

Abstract

ABSTRACTMagnetic resonance spectroscopy (MRS) is one of the few non-invasive imaging modalities capable of making neurochemical and metabolic measurementsin vivo. Traditionally, the clinical utility of MRS has been narrow. The most common use has been the “single-voxel spectroscopy” variant to discern the presence of a lactate peak in the spectra in one location in the brain, typically to evaluate for ischemia in neonates. Thus, the reduction of rich spectral data to a binary variable has not classically necessitated much signal processing. However, scanners have become more powerful and MRS sequences more advanced, increasing data complexity and adding 2 to 3 spatial dimensions in addition to the spectral one. The result is a spatially- and spectrally-variant MRS image ripe for image processing innovation. Despite this potential, the logistics for robustly accessing and manipulating MRS data across different scanners, data formats, and software standards remain unclear. Thus, as research into MRS advances, there is a clear need to better characterize its image processing considerations to facilitate innovation from scientists and engineers. Building on established neuroimaging standards, we describe a framework for manipulating these images that generalizes to the voxel, spectral, and metabolite level across space and multiple imaging sites while integrating with LCModel, a widely used quantitative MRS peak-fitting platform. In doing so, we provide examples to demonstrate the advantages of such a workflow in relation to recent publications and with new data. Overall, we hope our characterizations will lower the barrier of entry to MRS processing for neuroimaging researchers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3