SARS-CoV-2 Omicron BA.2.86: less neutralization evasion compared to XBB sub-variants

Author:

An Yaling,Zhou Xuemei,Tao Lifeng,Xie Haitang,Li Dedong,Wang Ruyue,Hu Hua,Xu Zepeng,Dai Lianpan,Xu KunORCID,Gao George F.

Abstract

AbstractThe continual emergence and circulation of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have caused a great challenge for the coronavirus disease 2019 (COVID-19) pandemic control. Recently, Omicron BA.2.86 was identified with more than 30 amino acid changes on the spike (S) protein, compared to Omicron BA.2 or XBB.1.5. The immune evasion potential of BA.2.86 is of great concern. In this study, we evaluated the neutralizing activities of sera collected from participants and mice. Participants were divided into five groups according to their vaccination (inactivated vaccine, protein subunit vaccine ZF2001 or ZF2202-A) and infection (Omicron BF.7/BA.5.2) status. ZF2202-A is ZF2001 vaccine’s next-generation COVID-19 vaccine with updated bivalent Delta-BA.5 RBD-heterodimer immunogen. BALB/c mice were immunized with XBB.1.5 RBD-homodimer, BA.5-BA.2, Delta-XBB.1.5 or BQ.1.1-XBB.1.5 RBD-heterodimers protein vaccine candidates for evaluating the neutralizing responses. We found that Omicron BA.2.86 shows stronger immune evasion than BA.2 due to >30 additional mutations on S protein. Compared to XBB sub-variants, BA.2.86 does not display more resistance to the neutralizing responses induced by ZF2001-vaccination, BF.7/BA.5.2 breakthrough infection or a booster dose of ZF2202-A-vaccination. In addition, the mouse experiment results showed that BQ.1.1-XBB.1.5 RBD-heterodimer and XBB.1.5 RBD-homodimer induced high neutralizing responses against XBB sub-variants and BA.2.86, indicating that next-generation COVID-19 vaccine should be developed to enhance the protection efficacy against the circulating strains in the future.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3