Wnt signaling and contact-mediated repulsion shape sensory dendritic fields

Author:

Tzeng Christopher P.ORCID,Shen KangORCID

Abstract

AbstractThe complete and non-redundant coverage of sensory tissues by neighboring neurons enables effective detection of stimuli in the environment. How the neurites of adjacent neurons establish their boundaries to achieve this completeness in coverage remains incompletely understood. Here, we use distinct fluorescent reporters to study two neighboring sensory neurons with complex dendritic arbors, FLP and PVD, inC. elegans. We quantify the sizes of their dendritic fields, and identify CWN-2/Wnt and LIN-17/Frizzled as a ligand and receptor that regulate the relative dendritic field sizes of these two neurons. Loss of eithercwn-2orlin-17results in complementary changes in the size of the dendritic fields of both neurons; the FLP arbor expands, while that of PVD shrinks. Using an endogenous knock-in mNeonGreen-CWN-2/Wnt, we find that CWN-2/Wnt is localized along the path of growing FLP dendrites. Dynamic imaging shows a significant braking of FLP dendrite growth upon CWN-2/Wnt contact. We find that LIN-17/Frizzled functions cell-autonomously in FLP to limit dendritic field size and propose that PVD fills the space left by FLP through contact-induced retraction. Our results reveal that interactions of dendrites with adjacent dendrites and with environmental cues both shape the boundaries of neighboring dendritic fields.HighlightsSecreted Wnt CWN-2 and cell-autonomous activity of neuronal LIN-17/Frizzled receptors restrict FLP dendritic field sizesEndogenously tagged CWN-2/Wnt is punctate and visible in the same plane of growing FLP dendritesGrowth of developing FLP dendrites is inhibited upon contact with extracellular CWN-2/Wnt and with PVD dendrites

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3