Bibliometric analysis of neuroscience publications quantifies the impact of data sharing

Author:

Emissah HerveORCID,Ljungquist Bengt,Ascoli Giorgio A.ORCID

Abstract

AbstractMotivationNeural morphology, the branching geometry of neurons and glia in the nervous system, is an essential cellular substrate of brain function and pathology. Despite the accelerating production of digital reconstructions of neural morphology in laboratories worldwide, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and prevent researchers from building on others’ work. Data sharing complements the development of computational resources and literature mining tools to accelerate scientific discovery.ResultsWe carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via the NeuroMorpho.Org online repository leads to a significant increase of citations to the original article, thus directly benefiting the authors. Moreover, the rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative meta-analysis applications, which accrue on average twice the citations of re-analyses of individual datasets. We also designed and deployed an open-source citation tracking web-service that allows researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and the released tool can facilitate the recognition of shared data reuse for promotion and tenure considerations, merit evaluations, and funding decisions.Availability and implementationThe code is available athttps://github.com/HerveEmissah/nmo-authors-app(author app) andhttps://github.com/HerveEmissah/nmo-bibliometric-analysis(bibliometric analysis app).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3