The evolution of the duckweed ionome mirrors losses in structural complexity

Author:

Smith Kellie E,Zhou Min,Flis Paulina,Jones Dylan,Bishopp Anthony,Yant Levi

Abstract

ABSTRACTBackground and AimsThe duckweeds consist of 36 species exhibiting impressive phenotypic variation, including the progressive evolutionary loss of a fundamental plant organ, the root. Loss of roots and reduction of vascular tissues in recently derived taxa occur in concert with genome expansions of up to 14-fold. Given the paired loss of roots and reduction in structural complexity in derived taxa, we focus on the evolution of the ionome (whole-plant elemental contents) in the context of these fundamental body plan changes. We expect that progressive vestigiality and eventual loss of roots may have both adaptive and maladaptive consequences which are hitherto unknown.MethodsWe quantify the ionomes of 34 accessions in 21 species across all duckweed genera, spanning 70 million years in this rapid cycling plant (doubling times are as low as 24 hours). We relate both micro– and macroevolutionary ionome contrasts to body plan remodelling and show nimble microevolutionary shifts in elemental accumulation and exclusion in novel accessions.Key ResultsWe observe a robust directional trend in calcium and magnesium levels decreasing from the ancestral representativeSpirodelagenus towards the derived rootlessWolffia, with the latter also accumulating cadmium. We also identify abundant within-species variation and hyperaccumulators of specific elements, with this extensive variation at the fine– as opposed to broad-scale.ConclusionsThese data underscore the impact of root loss, and reveal the very fine scale of microevolutionary variation in hyperaccumulation and exclusion of a wide range of elements. Broadly, they may point to trade-offs not well recognized in ionomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3