Adapting to heat stress by sowing summer grain crops early in late winter: Sorghum root growth, water use, and yield

Author:

Zhao DongxueORCID,deVoil Peter,Rognoni Bethany G.,Wilkus Erin,Eyre Joseph X,Broad Ian,Rodriguez Daniel

Abstract

AbstractCONTEXTDrought and extreme heat at flowering are common stresses limiting the yield of summer crops, which are likely to intensify and become more frequent as projected under climate change.OBJECTIVEThis study explores the idea that adaptation to these stresses could be increased by sowing summer crops early in late winter or spring, to avoid the overlap with critical crop stages around flowering. Here we report on the impacts of early sowing i.e., in late winter and spring on sorghum crop and root growth and function (i.e., water use), and final grain yield.METHODSTwo seasons of on-farm genotype (G) by environment (E) by management (M) sorghum experimentation were conducted in the Darling Downs region of Queensland, Australia. Each trial consisted of a factorial combination of three times of sowing (TOS, referred to as late winter, spring, and summer), two levels of irrigation, four plant populations, and six commercial genotypes. Treatments were replicated three times. Crop roots and shoot were sampled at the flag leaf stage for each TOS. Crop water use across the growing season was monitored using time-lapse electromagnetic induction (EMI) surveys. EMI was also used to calculate a root activity factor. Final grain yield and yield components were determined at maturity.RESULTSResults showed that TOS, irrigation levels, and their interactions significantly influenced crop root and shoot traits, water use, and yield, though results were not always consistent across seasons. In the first season which was dry and had large temperature contrasts between TOS, crop growth in the early sown crops was primarily limited by temperature. In contrast, the second season was much warmer and crop growth was instead primarily limited by water availability. Cold air and soil temperatures in the early sowing dates i.e., late winter and spring during the first season, lead to smaller crops with smaller rooting systems and root-to-shoot ratios, and roots having a larger average root diameter. In general terms, root length and root length density responded positively to increasing pre-flowering mean air temperatures ranging between 16 and 20°C, while root average diameters were larger below 19 °C or above 21°C. Early sowing advanced flowering and therefore decreased the risk of extreme heat during the critical stages around flowering and affected water use before and after flowering. The root activity factor was directly related to the crop root length density. The early sown crops increased yield by transferring water use from vegetative to reproductive stages. The larger yield of the early sown crop was associated with larger grain numbers, particularly for the tillers, and a larger water use efficiency. As expected, irrigated and summer-sown crops exhibited lowest water use efficiency. The early-sown crops left more water in the soil profile at maturity, particularly under irrigated conditions and with small plant populations.CONCLUSIONSWe conclude that early sown sorghum is a potential option to increase crop adaptation to hotter and drier environments. Here we propose that in the race to increase crop adaptation to heat stresses, plant breeding efforts should consider cold tolerance traits during crop germination, emergence, and early vegetative stages so that sorghum sowing windows could be significantly advanced.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3