Cellular rejuvenation protects neurons from inflammation mediated cell death

Author:

Drake Sienna S.,Mohammadnia Abdulshakour,Heale Kali,Groh Adam M.R.,Hua Elizabeth M.-L.,Zaman Aliyah,Hintermayer Matthew A.,Zandee Stephanie,Gosselin David,Stratton Jo Anne,Sinclair David A.,Fournier Alyson E.

Abstract

AbstractIn multiple sclerosis (MS), the invasion of the central nervous system by peripheral immune cells is followed by the activation of resident microglia and astrocytes. This cascade of events results in demyelination, which triggers neuronal damage and death. The molecular signals in neurons responsible for this damage are not yet fully characterized. In MS, retinal ganglion cell neurons (RGCs) of the central nervous system (CNS) undergo axonal injury and cell death. This phenomenon is mirrored in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. To understand the molecular landscape, we isolated RGCs from mice subjected to the EAE protocol. RNA-sequencing and ATAC-sequencing analyses were performed. Pathway analysis of the RNA-sequencing data revealed that RGCs displayed a molecular signature, similar to aged neurons, showcasing features of senescence. Single-nucleus RNA-sequencing analysis of neurons from human MS patients revealed a comparable senescence-like phenotype., which was supported by immunostaining RGCs in EAE mice. These changes include alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with anOct4-Sox2-Klf4transgene to convert neurons in the EAE model to a more youthful epigenetic and transcriptomic state enhanced the survival of RGCs. Collectively, this research uncovers a previously unidentified senescent-like phenotype in neurons under pathological inflammation and neurons from MS patients. The rejuvenation of this aged transcriptome improved visual acuity and neuronal survival in the EAE model supporting the idea that age rejuvenation therapies and senotherapeutic agents could offer a direct means of neuroprotection in autoimmune disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Information Theory of Aging;Nature Aging;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3