Comparative dynamics of gene expression during in vitro and in vivoCandida albicansfilamentation

Author:

Wakade Rohan S.,Krysan Damian J.ORCID

Abstract

AbstractCandida albicansis one of them most common causes of fungal disease in humans and is a commensal member of the human microbiome. The ability ofC. albicansto cause disease is tightly correlated with its ability to undergo a morphological transition from budding yeast to a filamentous form (hyphae and pseudohyphae). This morphological transition is accompanied by the induction of a set of well characterized hyphae-associated genes and transcriptional regulators. To date, the vast majority of data regarding this process has been based on in vitro studies of filamentation using a range of inducing conditions. Recently, we developed an in vivo imaging approach that allows the direct characterization of morphological transition during mammalian infection. Here, we couple this imaging assay with in vivo expression profiling to characterize the time course of in vivo filamentation and the accompanying changes in gene expression. We also compare in vivo observations to in vitro filamentation using a medium (RPMI 1640 tissue culture medium with 10% bovine calf serum) widely used to mimic host conditions. From these data, we make the following conclusions regarding in vivo and in vitro filamentation. First, the transcriptional programs regulating filamentation are rapidly induced in vitro and in vivo. Second, the tempo of filamentation in vivo is prolonged relative to in vitro filamentation and the period of high expression of genes associated with that process is also prolonged. Third, hyphae are adapting to changing infection environments after filamentation has reached steady-state.ImportanceCandida albicansfilamentation is correlated with virulence and is an intensively studied aspect ofC. albicansbiology. The vast majority of studies onC. albicansfilamentation are based on in vitro induction of hyphae and pseudohyphae. Here we used an in vivo filamentation assay and in vivo expression profiling to compare the tempo of morphogenesis and gene expression between in vitro and in vivo filamentation. Although the hyphal gene expression profile is induced rapidly in both conditions, it remains stably expressed over the 24hr time course in vivo while the expression of other environmentally responsive genes is dynamic. As such, it is important to regard the filamentation process as a separate growth phase ofC. albicansthat is as adaptable to changing growth conditions as the more familiar yeast phase.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3