Converting genetic information to non-equilibrium cellular thermodynamics in enzyme-catalyzed reactions

Author:

Gatenby Robert A.

Abstract

AbstractLiving systems use genomic information to maintain a stable highly ordered state far from thermodynamic equilibrium but the specific mechanisms and general principles governing the interface of genetics and thermodynamics has not been extensively investigated. Genetic information is quantified in unitless bits termed “Shannon entropy”, which does not directly relate to thermodynamic entropy or energy. Thus, it is unclear how the Shannon entropy of genetic information is converted into thermodynamic work necessary to maintain the non-equilibrium state of living systems. Here we investigate the interface of genetic information and cellular thermodynamics in enzymatic acceleration of a chemical reaction S+E→ES→E+P, where S and E are substrate and enzyme, ES is the enzyme substrate complex and P product. The rate of any intracellular chemical reaction is determined by probability functions at macroscopic (Boltzmann distribution of the reactant kinetic energies governed by temperature) or microscopic (overlap of reactant quantum wave functions) scales - described, respectively, by the Arrhenius and Knudsen equations. That is, the reaction rate, in the absence of a catalyst, is governed by temperature which determines the kinetic energy of the interacting molecules. Genetic information can act upon a when the encoded string of amino acids folds into a 3-deminsional structure that permits a lock/key spatial matching with the reactants. By optimally superposing the reactants’ wave functions, the information in the enzyme increases the reaction rate by up to15 orders of magnitude under isothermal conditions. In turn, the accelerated reaction rate alters the intracellular thermodynamics environment as the products are at lower Gibbs free energy which permits thermodynamic work (Wmax= −ΔG). Mathematically and biologically, the critical event that allows genetic information to produce thermodynamic work is the folding of the amino acid string specified by the gene into a 3-dimensional shape determined by its lowest energy state. Biologically, this allows the amino acid string to bind substrate and place them in an optimal spatial orientation. These key-lock are mathematically characterized by Kullback-Leibler Divergence and the interactions with the reaction channel now represent Fisher Information (the second derivative Kullback-Leibler divergence), which can take on the units of the process to which it is applied. Interestingly, Shannon is typically derived by “coarse graining” Shannon information. Thus, living system, by acting at a quantum level, “fine grain” Shannon information

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3