DNA methylation shapes the Polycomb landscape during the exit from naïve pluripotency

Author:

Albert Julien RichardORCID,Urli Teresa,Monteagudo-Sánchez Ana,Le Breton Anna,Sultanova Amina,David Angélique,Schulz Mathieu,Greenberg Maxim V.C.ORCID

Abstract

AbstractIn mammals, 5 methyl-cytosine (5mC) and Polycomb Repressive Complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naïve pluripotent state, there is a massive gain of 5mC coincident with a restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naïve and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. We went on to show that this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonistEzhip. At the regions where 5mC appears to genuinely supplant H3K27me3, we identified 68 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Employing site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. This study also reveals a non-canonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3