Identification of a convergent spinal neuron population that encodes itch

Author:

Sheahan Tayler D.ORCID,Warwick Charles A.ORCID,Cui Abby Y.,Baranger David A.A.ORCID,Perry Vijay J.,Smith Kelly M.,Manalo Allison P.,Nguyen Eileen K.,Koerber H. RichardORCID,Ross Sarah E.

Abstract

SummaryItch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural circuit basis for itch remains unclear. Here, we used two-photon Ca2+imaging of the dorsal horn to visualize the neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal neurons that is defined by the expression of GRPR. Moreover, we discover that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nucleus. Further, we show that nalfurafine, a clinically effective kappa opioid receptor agonist, relieves itch by inhibiting GRPR spinoparabrachial neurons. Finally, we demonstrate that a subset of GRPR spinal neurons show persistent, cell-intrinsic Ca2+oscillations. These experiments provide the first population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.In briefThrough population imaging, Sheahan et al. identify a network of neurons in the dorsal horn that is activated by pruritogens and find that kappa opioid receptor signaling inhibits itch through the selective inhibition of GRPR spinoparabrachial neurons.HighlightsItch-inducing agents drive activity in a common population of GRPR-expressing spinal interneuronsGRPR spinal projection neurons transmit itch from the spinal cord to the brainKappa opioids reduce itch through the inhibition of GRPR spinoparabrachial neuronsGRPR activation elicits persistent, intrinsic Ca2+oscillations

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3