Four Phases of a Force Transient Emerge from a Binary Mechanical System

Author:

Baker Josh E.

Abstract

ABSTRACTModels of muscle contraction are important for guiding drug discovery, drug validation, and clinical decision-making with the goal of improving human health. Models of muscle contraction are also key to discovering clean energy technologies from one of the most efficient and clean-burning machines on the planet. However, these important goals can only be met through muscle models that are based on science. Most every model and mechanism (e.g., a molecular power stroke) of muscle contraction described in the literature to date is based on a corpuscular mechanic philosophy that has been challenged by science for over two decades. A thermodynamic model and mechanisms (e.g., a molecular switch) of muscle contraction is supported by science but has not yet been tested against experimental data. Here, I show that following a rapid perturbation to the free energy of a thermodynamic muscle system, a transient force response emerges with four phases, each corresponding to a different clearly-defined thermodynamic (not molecular) process. I compare these four phases to those observed in two classic muscle transient experiments. The observed consistency between model and data implies that the simplest possible model of muscle contraction (a binary mechanical system) accurately describes muscle contraction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3