Longitudinal Deep Multi-Omics Profiling in aCLN3Δex7/8Minipig Model Reveals Novel Biomarker Signatures for Batten Disease

Author:

Rechtzigel Mitchell JORCID,Lee Brittany,Neville Christine,Huang Ting,Campos Alex Rosa,Motamedchaboki Khatereh,Hornburg DanielORCID,Johnson Tyler B,Swier Vicki J,Weimer Jill MORCID,Brudvig Jon J

Abstract

AbstractDevelopment of therapies for CLN3 Batten disease, a rare pediatric lysosomal storage disorder, has been hindered by the lack of etiological insights and translatable biomarkers to clinics. Here, we used a deep multi-omics approach to discover new biomarkers using longitudinal serum samples from a porcine model of CLN3 disease. Comprehensive metabolomics was combined with a nanoparticle-based LC-MS-based proteomic profiling coupled with TMTpro 18-plex to generate quantitative data on 769 metabolites and 2,634 proteins, collectively the most exhaustive multi-omics profile conducted on serum from a porcine model, which was previously impossible due a to lack of efficient deep serum proteome profiling technologies compatible with model organisms. The presymptomatic disease state was characterized by elevations in glycerophosphodiester species and lysosomal proteases, while later timepoints were enriched with species involved in immune cell activation and sphingolipid metabolism. Cathepsin S, Cathepsin B, glycerophosphoinositol, and glycerophosphoethanolamine captured a large portion of the genotype-correlated variation between healthy and diseased animals, suggesting that an index score based on these analytes could have great utility in the clinic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3