Mapping Structural Distribution and Gating-Property Impacts of Disease-Associated Missense Mutations in Voltage-Gated Sodium Channels

Author:

Ahangar Amin AkbariORCID,Elhanafy EslamORCID,Blanton Hayden,Li JingORCID

Abstract

AbstractThousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, autism, cardiac arrhythmia, and pain disorders. Yet variant effects of more mutations remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications is frequently employed to interpret of variant effects on function and guide precision therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar phenotypic effects can stem from unique molecular mechanisms. Our results show a high biophysical agreement (86%) between homologous disease-associated variants in different Navgenes, significantly surpassing the 60% phenotype (GoFo/LoFo) agreement among homologous mutants, suggesting the need for more nuanced disease categorization and treatment based on specific gating-property changes. Using UniProt data, we mapped over 2,400 disease-associated missense variants across nine human Nav channels and identified three clusters of mutation hotspots. Our findings indicate that mutations near the selectivity filter generally diminish the maximal current amplitude, while those in the fast inactivation region lean towards a depolarizing shift in half-inactivation voltage in steady-state activation, and mutations in the activation gate commonly enhance persistent current. In contrast to mutations in the PD, those within the VSD exhibit diverse impacts and subtle preferences on channel activity. This study shows great potential to enhance prediction accuracy for variant effects based on the structural context, laying the groundwork for targeted drug design in precision medicine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3