Synchronized long-read genome, methylome, epigenome, and transcriptome for resolving a Mendelian condition

Author:

Vollger Mitchell R.ORCID,Korlach JonasORCID,Eldred Kiara C.,Swanson ElliottORCID,Underwood Jason G.,Cheng Yong-Han H.ORCID,Ranchalis Jane,Mao YiziORCID,Blue Elizabeth E.ORCID,Schwarze Ulrike,Munson Katherine M.,Saunders Christopher T.ORCID,Wenger Aaron M.,Allworth Aimee,Chanprasert Sirisak,Duerden Brittney L.,Glass Ian,Horike-Pyne Martha,Kim Michelle,Leppig Kathleen A.ORCID,McLaughlin Ian J.,Ogawa JessicaORCID,Rosenthal Elisabeth A.,Sheppeard Sam,Sherman Stephanie M.,Strohbehn SamuelORCID,Yuen Amy L.,Reh Thomas A.,Byers Peter H.,Bamshad Michael J.ORCID,Hisama Fuki M.,Jarvik Gail P.,Sancak YaseminORCID,Dipple Katrina M.,Stergachis Andrew B.ORCID, ,

Abstract

AbstractResolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploidde novogenome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA,PDK3,MAB21L1, andRB1) previously associated with single-gene MCs. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four ‘omes’ to resolve. These included nonsense-mediated decay, fusion transcript formation, enhancer adoption, transcriptional readthrough silencing, and inappropriate X chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3