Simulation-based validation of a method to detect changes in SARS-CoV-2 reinfection risk

Author:

Lombard BelindaORCID,Moultrie HarryORCID,Pulliam Juliet R.C.ORCID,van Schalkwyk CariORCID

Abstract

AbstractBackgroundGiven the high global seroprevalence of SARS-CoV-2, understanding the risk of reinfection becomes increasingly important. Models developed to track trends in reinfection risk should be robust against possible biases arising from imperfect data observation processes.ObjectivesWe performed simulation-based validation of an existing catalytic model designed to detect changes in the risk of reinfection by SARS-CoV-2.MethodsThe catalytic model assumes the risk of reinfection is proportional to observed infections. Validation involved using simulated primary infections, consistent with the number of observed infections in South Africa. We then simulated reinfection datasets that incorporated different processes that may bias inference, including imperfect observation and mortality, to assess the performance of the catalytic model. A Bayesian approach was used to fit the model to simulated data, assuming a negative binomial distribution around the expected number of reinfections, and model projections were compared to the simulated data generated using different magnitudes of change in reinfection risk. We assessed the approach’s ability to accurately detect changes in reinfection risk when included in the simulations, as well as the occurrence of false positives when reinfection risk remained constant.Key FindingsThe model parameters converged in most scenarios leading to model outputs aligning with anticipated outcomes. The model successfully detected changes in the risk of reinfection when such a change was introduced to the data. Low observation probabilities (10%) of both primary- and re-infections resulted in low numbers of observed cases from the simulated data and poor convergence.LimitationsThe model’s performance was assessed on simulated data representative of the South African SARS-CoV-2 epidemic, reflecting its timing of waves and outbreak magnitude. Model performance under similar scenarios may be different in settings with smaller epidemics (and therefore smaller numbers of reinfections).ConclusionsEnsuring model parameter convergence is essential to avoid false-positive detection of shifts in reinfection risk. While the model is robust in most scenarios of imperfect observation and mortality, further simulation-based validation for regions experiencing smaller outbreaks is recommended. Caution must be exercised in directly extrapolating results across different epidemiological contexts without additional validation efforts.

Publisher

Cold Spring Harbor Laboratory

Reference19 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3