A biobank-scale test of marginal epistasis reveals genome-wide signals of polygenic epistasis

Author:

Fu Boyang,Pazokitoroudi AliORCID,Xue Albert,Anand Aakarsh,Anand Prateek,Zaitlen Noah,Sankararaman Sriram

Abstract

AbstractThe contribution of epistasis (interactions among genes or genetic variants) to human complex trait variation remains poorly understood. Methods that aim to explicitly identify pairs of genetic variants, usually single nucleotide polymorphisms (SNPs), associated with a trait suffer from low power due to the large number of hypotheses tested while also having to deal with the computational problem of searching over a potentially large number of candidate pairs. An alternate approach involves testing whether a single SNP modulates variation in a trait against a polygenic background. While overcoming the limitation of low power, such tests of polygenic or marginal epistasis (ME) are infeasible on Biobank-scale data where hundreds of thousands of individuals are genotyped over millions of SNPs.We present a method to test for ME of a SNP on a trait that is applicable to biobank-scale data. We performed extensive simulations to show that our method provides calibrated tests of ME. We applied our method to test for ME at SNPs that are associated with 53 quantitative traits across ≈ 300 K unrelated white British individuals in the UK Biobank (UKBB). Testing 15, 601 trait-loci associations that were significant in GWAS, we identified 16 trait-loci pairs across 12 traits that demonstrate strong evidence of ME signals (p-value). We further partitioned the significant ME signals across the genome to identify 6 trait-loci pairs with evidence of local (within-chromosome) ME while 15 show evidence of distal (cross-chromosome) ME. Across the 16 trait-loci pairs, we document that the proportion of trait variance explained by ME is about 12x as large as that explained by the GWAS effects on average (range: 0.59 to 43.89). Our results show, for the first time, evidence of interaction effects between individual genetic variants and overall polygenic background modulating complex trait variation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3