Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia using Flow Cytometry

Author:

Lewis Joshua E.ORCID,Cooper Lee A.D.ORCID,Jaye David L.ORCID,Pozdnyakova OlgaORCID

Abstract

ABSTRACTCurrent flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in both the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models which make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1,820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia [AUROC 0.961] and accurately differentiates AMLversusB- and T- lymphoblastic leukemia [AUROC 0.965]. Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) [AUROC 0.814], andNPM1variants [AUROC 0.807]. Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood;The Journal of the American Society of Hematology,2022

2. Flow cytometric immunophenotyping for hematologic neoplasms

3. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood;The Journal of the American Society of Hematology,2019

4. Lewis, J. E. & Pozdnyakova, O . Digital assessment of peripheral blood and bone marrow aspirate smears. International Journal of Laboratory Hematology (2023).

5. Dehkharghanian, T. , Mu, Y. , Tizhoosh, H. R. & Campbell, C. J . Applied machine learning in hematopathology. International Journal of Laboratory Hematology (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3