Author:
Banerjee Puja,Monje-Galvan Viviana,Voth Gregory A.
Abstract
AbstractThe HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated(Myr) N-terminal matrix (MA) domain of Gag which eventually multimerize on the membrane to form trimers and higher-order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between MA monomers and MA-membrane still remain elusive. Our present study focuses on the membrane binding dynamics of a higher-order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of a MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest that MA trimerization facilitates Myr insertion, but MA trimer-trimer interactions in the lattice of immature HIV-1 particles can hinder the same. Additionally, local lipid density patterns of different lipid species provide a signature of the initial stage of lipid-domain formation upon membrane binding of the protein complex.TOC
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献