Correction for Collider Bias in the Genome-wide Association Study of Diabetes-Related Heart Failure due to Bidirectional Relationship between Heart Failure and Type 2 Diabetes

Author:

Sun Yan VORCID,Liu ChangORCID,Hui Qin,Zhou Jin J,Gaziano J MichaelORCID,Wilson Peter WFORCID,Joseph JacobORCID,Phillips Lawrence SORCID,

Abstract

ABSTRACTAimsType 2 diabetes (T2D) is a major risk factor for heart failure (HF) across demographic groups. On the other hand, metabolic impairment, including elevated T2D incidence is a hallmark of HF pathophysiology. We investigated the bidirectional relationship between T2D and HF, and identified genetic associations with diabetes-related HF after correction for potential collider bias.MethodsWe performed a genome-wide association study (GWAS) of HF to identify genetic instrumental variables (GIVs) for HF, and to enable bidirectional Mendelian Randomization (MR) analysis between T2D and HF. Since genetics and HF can independently influence T2D, collider bias may occur when T2D (i.e., collider) is controlled for by design or analysis. Thus, we conducted GWAS of diabetes-related HF with correction for collider bias.ResultsWe first identified 61 genomic loci, including 24 novel loci, significantly associated with all-cause HF in 114,275 HF cases and over 1.5 million controls of European ancestry. Combined with the summary statistics of a T2D GWAS, we obtained 59 and 82 GIVs for HF and T2D, respectively. Using a two-sample bidirectional MR approach, we estimated that T2D increased HF risk (OR 1.07, 95% CI 1.04-1.10), while HF also increased T2D risk (OR 1.60, 95% CI 1.36-1.88). Then we performed a GWAS of diabetes-related HF corrected for collider bias due to prevalent HF affecting incidence of T2D. After removing the spurious association ofTCF7L2locus due to collider bias, we identified two genome-wide significant loci close toPITX2(chromosome 4) andCDKN2B−AS1(chromosome 9) associated with diabetes-related HF in the Million Veteran Program, and replicated the associations in the UK Biobank study.ConclusionWe identified novel HF-associated loci to enable bidirectional MR study of T2D and HF. Our MR findings support T2D as a HF risk factor and provide strong evidence that HF increases T2D risk. As a result, collider bias leads to spurious genetic associations of diabetes-related HF, which can be effectively corrected to identify true positive loci. Evaluation of collider bias should be a critical component when conducting GWAS of complex disease phenotypes such as diabetes-related cardiovascular complications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3