Pharmacokinetic effects of a single-dose nutritional ketone ester supplement on brain ketone and glucose metabolism in alcohol use disorder – a pilot study

Author:

Li Xinyi,Young Anthony J.,Pereira-Rufino Lais S.,Shi Zhenhao,Byanyima Juliana,Vesslee Sianneh,Reddy Rishika,Pond Timothy,Elliott Mark,Reddy Ravinder,Doot Robert K.,van der Veen Jan-Willem,Kranzler Henry R.,Reddy Nanga Ravi Prakash,Dubroff Jacob G.,Wiers Corinde E.ORCID

Abstract

AbstractIntroductionAcute alcohol intake decreases brain glucose metabolism and increases brain uptake of acetate, a metabolite of alcohol. Individuals with alcohol use disorder (AUD) show elevated brain acetate metabolism at the expense of glucose, a shift in energy utilization that persists beyond acute intoxication. We recently reported that nutritional ketosis and administration of ketone bodies as an alternative energy source to glucose reduce alcohol withdrawal severity and alcohol craving in AUD. However, the regional effects of nutritional ketosis on brain ketone (beta-hydroxybutyrate [BHB]) and glucose metabolism have not been studied in AUD.MethodsFive participants with AUD underwent two magnetic resonance imaging (MRI) sessions and 4 participants with AUD underwent two positron emission tomography (PET) sessions with18F-fluorodeoxyglucose. All participants completed one session without KE intervention and one session during which they consumed 395 mg/kg(R)-3-hydroxybutyl(R)-3-hydroxybutyrate Ketone Ester (KE) intervention (TdeltaS Global Inc.) before the scan. The order of the sessions was randomized. For the PET cohort, blood glucose and ketone levels were assessed and voxel-wise maps of the cerebral metabolic rate of glucose (CMRglc) were computed at each session. For the MRI cohort, brain anterior cingulate BHB levels were assessed using magnetic resonance spectroscopy.ResultsA single dose of KE elevated blood BHB and anterior cingulate BHB levels compared to baseline. Moreover, blood glucose levels were lower with KE than baseline, and whole-brain CMRglc decreased by 17%. The largest KE-induced CMRglc reductions were in the frontal, occipital, cortex, and anterior cingulate cortices.ConclusionThese findings provide preliminary evidence that KE administration elevates ketone and reduces brain glucose metabolism in humans, consistent with a shift from glucose to ketones as a brain energy source. Average reductions in CMRglc of 17% are similar to global average reductions documented with administration of 0.25-0.5 g/kg of alcohol. Documenting the clinical and neurometabolic effects of nutritional ketosis will yield fundamental knowledge as to its potential beneficial effects as a treatment for AUD and its underlying neural mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3