HI-FISH: WHOLE BRAIN IN SITU MAPPING OF NEURONAL ACTIVATION IN DROSOPHILA DURING SOCIAL BEHAVIORS AND OPTOGENETIC STIMULATION

Author:

Watanabe Kiichi,Chiu Hui,Anderson David J.ORCID

Abstract

AbstractMonitoring neuronal activity at single-cell resolution in freely movingDrosophilaengaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss-or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here we describe a method, called HI-FISH, for brain-wide mapping of active cells expressing the Immediate Early Genehr38using a high-sensitivity/low background amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1acells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH) we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally we compare the activity of P1aneurons during sequential performance of courtship and aggression, using intronic vs. exonichr38probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1aneurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis inDrosophila.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circuits and the single neuron;Journal of Neurophysiology;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3