Differential Modulation of Polycomb-Associated Histone Marks by cBAF, pBAF, and gBAF Complexes

Author:

Bergwell MaryORCID,Park JinYoungORCID,Kirkland Jacob G.ORCID

Abstract

AbstractChromatin regulators are a group of proteins that can alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein’s access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes (mSWI/SNF) are a group of ATPase-dependent chromatin remodelers that alter chromatin states. In mouse embryonic stem cells (mESCs), there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF or ncBAF). While cBAF and gBAF contain the SS18 protein subunit, pBAF lacks SS18. Previous studies used a novel dCas9-mediated inducible recruitment (FIRE-Cas9) of mSWI/SNF complexes via SS18 to theNkx2.9locus.Nkx2.9is a developmentally regulated gene that requires mSWI/SNF for transcriptional activation during neural differentiation. However, in mESCs,Nkx2.9is bivalent, meaning nucleosomes at the locus have both active and polycomb-associated repressive modifications. Upon recruitment of SS18-containing complexes, polycomb-associated histone marks are removed, followed by transcriptional activation ofNkx2.9. However, since both cBAF and gBAF share the SS18 subunit, it is unclear whether one or both complexes oppose the polycomb repressive marks. The ability of pBAF to do the same also remains unknown. In this study, we used unique subunits to recruit each of the three complexes to the Nkx2.9 locus individually. Here, we show that cBAF most effectively opposes polycomb repressive marks atNkx2.9, leading to transcriptional activation of the gene. Recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 and polycomb repressive-1 H2AK119ub histone marks, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3