Abstract
AbstractDeep learning based protein structure prediction has facilitated major breakthroughs in biological sciences. However, current methods struggle with alternative conformation prediction and offer limited integration of expert knowledge on protein dynamics. We introduce AFEXplorer, a generic approach that tailors AlphaFold predictions to user-defined constraints in coarse coordinate spaces by optimizing embedding features. Its effectiveness in generating functional protein conformations in accordance with predefined conditions were demonstrated through comprehensive examples. AFEXplorer serves as a versatile platform for conditioned protein structure prediction, bridging the gap between automated models and domain-specific insights.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献