HaloTag display enables quantitative single-particle characterization and functionalization of engineered extracellular vesicles

Author:

Mitrut Roxana E.ORCID,Stranford Devin M.ORCID,Chan Jonathan M.ORCID,Bailey Matthew D.ORCID,Luo MinruiORCID,Meade Thomas J.ORCID,Wang MuzhouORCID,Leonard Joshua N.ORCID

Abstract

ABSTRACTExtracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells, and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity, and other properties. Measuring how incorporation varies across a population of EVs is important for characterizing such materials and understanding their function, yet it remains challenging to quantitatively characterize the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterization platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labeling to antibody-labeling of EVs using single vesicle flow cytometry, enabling us to quantify the substantial degree to which antibody labeling can underestimate the absolute number of proteins present on an EV. Finally, we demonstrate use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterization tool which complements and expands existing methods.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3