Amino acid residues for specific binding to ssDNA facilitate topological loading of bacterial condensin MukB

Author:

Akiyama KoichiroORCID,Yano KoichiORCID,Niki HironoriORCID

Abstract

ABSTRACTThe bacterial condensin MukB facilitates proper chromosome segregation inEscherichia coli. A portion of the MukB proteins localize at a specific chromosome region, binding to DNA in a non-sequence-specific manner. However, it is unclear how MukB localizes at a particular site without sequence specificity. Like other structural maintenance of chromosome (SMC) proteins, MukB topologically loads onto DNA, and It has an intrinsic property of preferential topological loading onto the single-stranded DNA (ssDNA). We consider it crucial for the localization of a specific region. To investigate the property of MukB, we attempted to identify positively charged amino acid residues responsible for ssDNA binding. We created a series of mutated MukB proteins in which a single positively charged amino acid was replaced with a negatively charged one. The results showed that some substitutions located on the inner surface of the MukB head domain impacted ssDNA-binding activity, leading to deficiencies in cell growth and nucleoid segregation. The efficiency of topological loading onto ssDNA was also decreased when the positive charges were replaced with negative ones. These amino acid residues align with and bind to ssDNA when the MukB dimer secures ssDNA within its ring, thereby likely strengthening the ssDNA-binding ability of MukB.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3