Abstract
AbstractClonal hematopoiesis (CH) arises when hematopoietic stem cells (HSC) acquire mutations in genes, includingDNMT3AandTET2, conferring a competitive advantage through a mechanism that remains unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on CH bone marrow samples. Most of the selective advantage of mutant cells occurs within HSCs.DNMT3AandTET2-mutant clones expand further in early progenitors, whileTET2mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared to HSC from non-CH samples, revealing a non-cell autonomous mechanism. However,DNMT3AandTET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are more resistant to the deleterious impact of inflammation and aging.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献