Benchmarking Cross-Docking Strategies for Structure-Informed Machine Learning in Kinase Drug Discovery

Author:

Schaller DavidORCID,Christ Clara D.ORCID,Chodera John D.ORCID,Volkamer AndreaORCID

Abstract

AbstractIn recent years machine learning has transformed many aspects of the drug discovery process including small molecule design for which the prediction of the bioactivity is an integral part. Leveraging structural information about the interactions between a small molecule and its protein target has great potential for downstream machine learning scoring approaches, but is fundamentally limited by the accuracy with which protein:ligand complex structures can be predicted in a reliable and automated fashion.With the goal of finding practical approaches to generating useful kinase:inhibitor complex geometries for downstream machine learning scoring approaches, we present a kinase-centric docking benchmark assessing the performance of different classes of docking and pose selection strategies to assess how well experimentally observed binding modes are recapitulated in a realistic crossdocking scenario. The assembled benchmark data set focuses on the well-studied protein kinase family and comprises a subset of 589 protein structures co-crystallized with 423 ATP-competitive ligands. We find that the docking methods biased by the co-crystallized ligand—utilizing shape overlap with or without maximum common substructure matching—are more successful in recovering binding poses than standard physics-based docking alone. Also, docking into multiple structures significantly increases the chance to generate a low RMSD docking pose. Docking utilizing an approach that combines all three methods (Posit) into structures with the most similar co-crystallized ligands according to shape and electrostatics proofed to be the most efficient way to reproduce binding poses achieving a success rate of 66.9 % across all included systems.The studied docking and pose selection strategies—which utilize the OpenEye Toolkit—were implemented into pipelines of theKinoML frameworkallowing automated and reliable protein:ligand complex generation for future downstream machine learning tasks. Although focused on protein kinases, we believe the general findings can also be transferred to other protein families.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3