Improved Resolution of Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Using Oxford Nanopore R10 Sequencing Chemistry

Author:

Ratcliff Jeremy D,Merritt Brian,Gooden Hannah,Siegers Jurre Y,Srikanth Abhi,Yann Sokhoun,Kol Sonita,Sin Sarath,Tok Songha,Karlsson Erik AORCID,Thielen Peter MORCID

Abstract

AbstractHighly pathogenic avian influenza viruses continue to pose global risks to One Health, including agriculture, public, and animal health. Rapid and accurate genomic surveillance is critical for monitoring viral mutations, tracing transmission, and guiding interventions in near real-time. Oxford Nanopore sequencing holds promise for real-time influenza genotyping, but data quality from R9 chemistry has limited its adoption due to challenges resolving low-complexity regions such as the biologically critical hemagglutinin cleavage site, a homopolymer of basic amino acids that distinguish highly pathogenic strains. In this study, human and avian influenza isolates (n=45) from Cambodia were sequenced using both R9.4.1 and R10.4.1 flow cells and chemistries to evaluate performance between approaches. Overall, R10.4.1 yielded increased data output with higher average quality compared to R9.4.1, producing improved consensus sequences using a reference-based bioinformatics approach. R10.4.1 had significantly lower minor population insertion and deletion frequencies, driven by improved performance in low sequence complexity regions prone to insertion and deletion errors, such as homopolymers. Within the hemagglutinin cleavage site, R10.4.1 resolved the correct motif in 90% of genomes compared to only 60% with R9.4.1. Further examination showed reduced frameshift mutations in consensus sequences generated with R10.4.1 that could result in incorrectly classified virulence. Improved consensus genome quality from nanopore sequencing approaches, especially across biologically important low-complexity regions, is critical to reduce subjective hand-curation and will improve local and global genomic surveillance responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3