High fusion and cytopathy of SARS-CoV-2 variant B.1.640.1

Author:

Bolland WilliamORCID,Michel Vincent,Planas Delphine,Hubert Mathieu,Guivel-Benhassine Florence,Porrot Françoise,Staropoli Isabelle,N’Debi Mélissa,Rodriguez Christophe,Fourati SlimORCID,Prot Matthieu,Planchais Cyril,Hocqueloux Laurent,Simon-Lorière EtienneORCID,Mouquet Hugo,Prazuck Thierry,Pawlotsky Jean-MichelORCID,Bruel TimothéeORCID,Schwartz OlivierORCID,Buchrieser Julian

Abstract

ABSTRACTSARS-CoV-2 variants with undetermined properties have emerged intermittently throughout the COVID-19 pandemic. Some variants possess unique phenotypes and mutations which allow further characterization of viral evolution and spike functions. Around 1100 cases of the B.1.640.1 variant were reported in Africa and Europe between 2021 and 2022, before the expansion of Omicron. Here, we analyzed the biological properties of a B.1.640.1 isolate and its spike. Compared to the ancestral spike, B.1.640.1 carried 14 amino acid substitutions and deletions. B.1.640.1 escaped binding by some anti-NTD and -RBD monoclonal antibodies, and neutralization by sera from convalescent and vaccinated individuals. In cell lines, infection generated large syncytia and a high cytopathic effect. In primary airway cells, B.1.640.1 replicated less than Omicron BA.1 and triggered more syncytia and cell death than other variants. The B.1.640.1 spike was highly fusogenic when expressed alone. This was mediated by two poorly characterized and infrequent mutations located in the spike S2 domain, T859N and D936H. Altogether, our results highlight the cytopathy of a hyper-fusogenic SARS-CoV-2 variant, supplanted upon the emergence of Omicron BA.1.ImportanceOur results highlight the plasticity of SARS-CoV-2 spike to generate highly fusogenic and cytopathic strains with the causative mutations being uncharacterized in previous variants. We describe mechanisms regulating the formation of syncytia and the subsequent consequences in cell lines and a primary culture model, which are poorly understood.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3