Abstract
AbstractBackgroundThe Fontan operation is a palliative technique for patients born with single ventricle heart disease. The superior vena cava (SVC), inferior vena cava (IVC), and hepatic veins are connected to the pulmonary arteries in a total cavopulmonary connection by an extracardiac (EC) conduit or a lateral tunnel (LT) connection. A balanced hepatic flow distribution (HFD) to both lungs is essential to prevent pulmonary arteriovenous malformations and cyanosis. HFD is highly dependent on the local hemodynamics.ObjectiveThe effect of age-related changes in caval inflows on HFD was evaluated using cardiac MRI (CMR) data and patient-specific computational fluid dynamics (CFD) modeling.MethodsSVC and IVC flow from 414 Fontan patients were collected to establish a relationship between SVC:IVC flow ratio and age. CFD modeling was performed in 60 (30 EC and 30 LT) patient models to quantify the HFD that corresponded to patient ages of 3, 8, and 15 years, respectively.ResultsSVC:IVC flow ratio inverted at ∼8 years of age, indicating a clear shift to lower body flow predominance. Our data showed that variation of HFD in response to age-related changes in caval inflows (SVC:IVC = 2,1, and 0.5 corresponded to ages 3, 8, and 15+ respectively) was not significant for EC but statistically significant for LT cohorts. For all three caval inflow ratios, a positive correlation existed between the IVC flow distribution to both the lungs and the HFD. However, as the SVC:IVC ratio changed from 2→0.5 (age 3→15+), the correlation’s strength decreased from 0.87→0.64, due to potential flow perturbation as IVC flow momentum increased.ConclusionOur analysis provided quantitative insights into the impact of the changing caval inflows on Fontan’s long-term HFD, highlighting the importance of including SVC:IVC variations over time to understand Fontan’s long-term hemodynamics. These findings broaden our understanding of Fontan hemodynamics and patient outcomes.Clinical PerspectiveWith improvement in standard of care and management of single ventricle patients with Fontan physiology, the population of adults with Fontan circulation is increasing. Consequently, there is a clinical need to comprehend the impact of patient growth on Fontan hemodynamics. Using CMR data, we were able to quantify the relationship between changing caval inflows and somatic growth. We then used patient-specific computational flow modeling to quantify how this relationship affected the distribution of long-term hepatic flow in extracardiac and lateral tunnel Fontan types. Our findings demonstrated the significance of including SVC:IVC changes over time in CFD modeling to learn more about the long-term hemodynamics of Fontan. Fontan surgical approaches are increasingly planned and optimized using computational flow modeling. For a patient undergoing a Fontan procedure, the workflow presented in this study that takes into account the variations in Caval inflows over time can aid in predicting the long-term hemodynamics in a planned Fontan pathway.
Publisher
Cold Spring Harbor Laboratory
Reference39 articles.
1. Mazza GA , Gribaudo E and Agnoletti G . The pathophysiology and complications of Fontan circulation. Acta Bio Medica: Atenei Parmensis. 2021;92.
2. Pulmonary arteriovenous malformations after the superior cavopulmonary shunt: mechanisms and clinical implications;Expert review of cardiovascular therapy,2014
3. Maxey TS , Herlong JR , Jansen LN and Kirshbom PM. Fontan Procedure Critical Heart Disease in Infants and Children : Elsevier; 2019: 747–757. e2.
4. Pulmonary Arteriovenous Malformations
5. Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American Heart Association;Circulation,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献