Phosphoproteomics reveals content and signaling differences between neonatal and adult platelets

Author:

Thom Christopher SORCID,Davenport Patricia,Fazelinia Hossein,Liu Zhi-Jian,Zhang Haorui,Ding Hua,Roof Jennifer,Spruce Lynn A,Ischiropoulos Harry,Sola-Visner Martha

Abstract

AbstractBackground and ObjectiveRecent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets.MethodsWe isolated resting umbilical cord blood-derived platelets from healthy full term neonates (n=9) and resting blood platelets from healthy adults (n=7), and compared protein and phosphoprotein contents using data independent acquisition mass spectrometry.ResultsWe identified 4745 platelet proteins with high confidence across all samples. Adult and neonatal platelets clustered separately by principal component analysis. Adult platelets were significantly enriched for immunomodulatory proteins, including β2 microglobulin and CXCL12, whereas neonatal platelets were enriched for ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched for phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched for phosphorylated proteins involved in insulin growth factor signaling.ConclusionsUsing state-of-the-art mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation compared with adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of a molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3