Abstract
AbstractMeclizine (Antivert, Bonine) is a first-generation H1 antihistamine used in the treatment of motion sickness and vertigo. Despite its wide medical use for over 70 years, its crystal structure and the details of protein-drug interactions remained unknown. In this study, we used microcrystal electron diffraction (MicroED) to determine the three-dimensional (3D) crystal structure of meclizine dihydrochloride directly from a seemingly amorphous powder. Two racemic enantiomers (R/S) were found in the unit cell, which packed as repetitive double layers in the crystal lattice. The packing was made of multiple strong N-H···Cl-hydrogen bonding interactions and weak interactions like C-H···Cl-and pi-stacking. Molecular docking revealed the binding mechanism of meclizine to the histamine H1 receptor. A comparison of the docking complexes between histamine H1 receptor and meclizine or levocetirizine (a second-generation antihistamine) showed the conserved binding sites. This research illustrates the combined use of MicroED and molecular docking in unraveling protein-drug interactions for precision drug design and optimization.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献