Millimeter-sized battery-free epidural cortical stimulators

Author:

Woods Joshua E.ORCID,Singer Amanda L.,Alrashdan Fatima,Tan Wendy,Tan Chunfeng,Sheth Sunil A.,Sheth Sameer A.ORCID,Robinson Jacob T.

Abstract

AbstractRefractory neurological and psychiatric disorders are increasingly treated with brain stimulation therapies using implanted neuromodulation devices. Current commercially available stimulation systems, however, are limited by the need for implantable pulse generators and wired power; the complexity of this architecture creates multiple failure points including lead fractures, migration, and infection. Enabling less invasive approaches could increase access to these therapies. Here we demonstrate the first millimeter-sized leadless brain stimulator in large animal and human subjects. This Digitally programmable Over-brain Therapeutic (or DOT) is approximately 1 cm in width yet can produce sufficient energy to stimulate cortical activity on-demand through the dura. This extreme miniaturization is possible using recently developed magnetoelectric wireless power transfer that allows us to reach power levels required to stimulate the surface of the brain without direct contact to the cortical surface. This externally powered cortical stimulation (XCS) opens the possibility of simple minimally invasive surgical procedures to enable precise, long-lasting, and at-home neuromodulation with tiny implants that never contact the surface of the brain.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Current clinical application of deep-brain stimulation for essential tremor;Neuropsychiatr. Dis. Treat,2013

2. Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation

3. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders;Annu. Rev. Pharmacol. Toxicol,2020

4. Neural effects of transcranial magnetic stimulation at the single-cell level;Nat. Commun,2019

5. Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape;Brain Stimul. Basic Transl. Clin. Res. Neuromodulation,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3