Finding Long-COVID: Temporal Topic Modeling of Electronic Health Records from the N3C and RECOVER Programs

Author:

O’Neil Shawn T.ORCID,Madlock-Brown CharisseORCID,Wilkins Kenneth J.ORCID,McGrath Brenda M.ORCID,Davis Hannah E.ORCID,Assaf Gina S.ORCID,Wei HannahORCID,Zareie ParyaORCID,French Evan T.ORCID,Loomba JohannaORCID,McMurry Julie A.ORCID,Zhou AndreaORCID,Chute Christopher G.ORCID,Moffitt Richard A.ORCID,Pfaff Emily RORCID,Yoo Yun JaeORCID,Leese PeterORCID,Chew Robert F.ORCID,Lieberman MichaelORCID,Haendel Melissa A.ORCID,

Abstract

AbstractPost-Acute Sequelae of SARS-CoV-2 infection (PASC), also known as Long-COVID, encompasses a variety of complex and varied outcomes following COVID-19 infection that are still poorly understood. We clustered over 600 million condition diagnoses from 14 million patients available through the National COVID Cohort Collaborative (N3C), generating hundreds of highly detailed clinical phenotypes. Assessing patient clinical trajectories using these clusters allowed us to identify individual conditions and phenotypes strongly increased after acute infection. We found many conditions increased in COVID-19 patients compared to controls, and using a novel method to predict patient/cluster assignment over time, we additionally found phenotypes specific to patient sex, age, wave of infection, and PASC diagnosis status. While many of these results reflect known PASC symptoms, the resolution provided by this unprecedented data scale suggests avenues for improved diagnostics and mechanistic understanding of this multifaceted disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3