Early postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons

Author:

Krajeski Rohan N.ORCID,Macey-Dare Anežka,van Heusden Fran,Ebrahimjee Farid,Ellender Tommas J.ORCID

Abstract

AbstractA dysfunctional striatum is thought to contribute to neurodevelopmental disorders such as ADHD, Tourette’s syndrome and OCD. Insight into these disorders is reliant on an understanding of the normal development of the striatal cellular and circuit properties. Here we combined whole-cell patch-clamp electrophysiology and anatomical reconstructions of D1 and D2 striatal projection neurons (SPNs) in brain slices to characterize the development of the electrophysiological and morphological properties as well as their long-range and local inputs during the first three postnatal weeks. Overall, we find that many properties develop in parallel but we make several key observations. Firstly, that the electrophysiological properties of young D1 SPNs are more mature and that distinctions between D1 and D2 SPNs become apparent in the second postnatal week. Secondly, that dendrites and spines as well as excitatory inputs from cortex develop in parallel with cortical inputs exhibiting a prolonged period of maturation involving changes in postsynaptic glutamate receptors. Lastly, that initial local connections between striatal SPNs consist of gap junctions, which are gradually replaced by inhibitory synaptic connections. Interestingly, relative biases in inhibitory synaptic connectivity seen between SPNs in adulthood, such as a high connectivity between D2 SPNs, are already evident in the second postnatal week. Combined, these results provide an experimental framework for future investigations of striatal neurodevelopmental disorders and show that many of the cellular and circuit properties are established in the first and second postnatal weeks suggesting intrinsic programs guide their development.Significance StatementNormal brain development involves the formation of neurons, which develop correct electrical and morphological properties and are precisely connected with each other in a neural circuit. In neurodevelopmental disorders these processes go awry leading to behavioral and cognitive problems later in life. Here we provide for the first time a detailed quantitative description of the cellular and circuit properties of the two main neuron types of the striatum during the first postnatal weeks. This can form an experimental framework for future studies into neurodevelopmental disorders. We find that most of the properties for both types of striatal neuron develop in parallel and are already established by the second postnatal week suggesting a key role for intrinsic programs in guiding their development.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3