Author:
Mizuno Yuji,Kawasaki Masahiro,Shimono Masanori,Miniussi Carlo,Okazaki Yuka O,Ueno Kenichi,Suzuki Chisato,Asamizuya Takeshi,Cheng Kang,Kitajo Keiichi
Abstract
AbstractNon-invasive human electroencephalography (EEG) coupled with transcranial magnetic stimulation (TMS) is currently used to measure coarse stimulus-response relationships in brain physiology during behavior. However, with key modifications, the TMS-EEG technique holds even greater promise for monitoring fine-scale neural signatures of human behavior. Here, we demonstrate that a novel TMS-EEG co-registration technique can dynamically monitor individual human variation in perception based solely on EEG resting-state intrinsic effective connectivity probed by TMS-based phase resetting of ongoing activity. We used a bistable stimulus task, where the percept is perceived as either horizontal or vertical apparent motion, to record gamma band interhemispheric integration of information. Fine-grained inter-individual behavioral differences in horizontal motion bias could be measured by tracking resting-state gamma-band effective connectivity from right hMT+ to left hMT+. Thus, our method of triggering intrinsic resting-state effective connectivity in oscillatory dynamics can monitor individual differences in perception via the long-range integration of information. This technique will be useful for the manipulative dissection of individual-scale human cognition mediated by neural dynamics and may also expand neurofeedback approaches.
Publisher
Cold Spring Harbor Laboratory