Substrate channeling in oxylipin biosynthesis through a protein complex in the plastid envelope of Arabidopsis thaliana

Author:

Pollmann Stephan,Springer Armin,Rustgi Sachin,von Wettstein Diter,Kang ChulHee,Reinbothe Christiane,Reinbothe Steffen

Abstract

ABSTRACTOxygenated membrane fatty acid derivatives dubbed oxylipins play important roles in the plant’s defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that, amongst others, comprise volatile aldehydes and jasmonic acid (JA). Because all oxylipins are derived from the same pathway, we asked how their synthesis might be regulated and focused on two closely related, atypical cytochrome P450 enzymes designated CYP74A and CYP74B, i.e., allene oxide synthase (AOS) and hydroperoxide lyase (HPL). Both enzymes compete for the same substrate but give rise to different products. While the final product of the AOS branch is JA, those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex could be modelled and amino acids involved in catalysis and subunit interactions identified. Genetic studies identified the microRNA 319 (miR319)-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) to control JA production through the AOS-LOX2-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning the plant’s defense machinery in response to biotic and abiotic stimuli.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3