Benchmarking predictions of MHC class I restricted T cell epitopes

Author:

Paul Sinu,Croft Nathan P.,Purcell Anthony W.,Tscharke David C.,Sette Alessandro,Nielsen Morten,Peters Bjoern

Abstract

AbstractT cell epitope candidates are commonly identified using computational prediction tools in order to enable applications such as vaccine design, cancer neoantigen identification, development of diagnostics and removal of unwanted immune responses against protein therapeutics. Most T cell epitope prediction tools are based on machine learning algorithms trained on MHC binding or naturally processed MHC ligand elution data. The ability of currently available tools to predict T cell epitopes has not been comprehensively evaluated. In this study, we used a recently published dataset that systematically defined T cell epitopes recognized in vaccinia virus (VACV) infected mice, considering both peptides predicted to bind MHC or experimentally eluted from infected cells, making this the most comprehensive dataset of T cell epitopes mapped in a complex pathogen. We evaluated the performance of all currently publicly available computational T cell epitope prediction tools to identify these major epitopes from all peptides encoded in the VACV proteome. We found that all methods were able to improve epitope identification above random, with the best performance achieved by neural network-based predictions trained on both MHC binding and MHC ligand elution data (NetMHCPan-4.0 and MHCFlurry). Impressively, these methods were able to capture more than half of the major epitopes in the top 0.04% (N = 277) of peptides in the VACV proteome (N = 767,788). These performance metrics provide guidance for immunologists as to which prediction methods to use. In addition, this benchmark was implemented in an open and easy to reproduce format, providing developers with a framework for future comparisons against new tools.Author summaryComputational prediction tools are used to screen peptides to identify potential T cell epitope candidates. These tools, developed using machine learning methods, save time and resources in many immunological studies including vaccine discovery and cancer neoantigen identification. In addition to the already existing methods several epitope prediction tools are being developed these days but they lack a comprehensive and uniform evaluation to see which method performs best. In this study we did a comprehensive evaluation of publicly accessible MHC I restricted T cell epitope prediction tools using a recently published dataset of Vaccinia virus epitopes. We found that methods based on artificial neural network architecture and trained on both MHC binding and ligand elution data showed very high performance (NetMHCPan-4.0 and MHCFlurry). This benchmark analysis will help immunologists to choose the right prediction method for their desired work and will also serve as a framework for tool developers to evaluate new prediction methods.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3