Effects of transcriptional noise on estimates of gene and transcript expression in RNA sequencing experiments

Author:

Varabyou AlesORCID,Salzberg Steven L.ORCID,Pertea MihaelaORCID

Abstract

RNA sequencing is widely used to measure gene expression across a vast range of animal and plant tissues and conditions. Most studies of computational methods for gene expression analysis use simulated data to evaluate the accuracy of these methods. These simulations typically include reads generated from known genes at varying levels of expression. Until now, simulations did not include reads from noisy transcripts, which might include erroneous transcription, erroneous splicing, and other processes that affect transcription in living cells. Here we examine the effects of realistic amounts of transcriptional noise on the ability of leading computational methods to assemble and quantify the genes and transcripts in an RNA sequencing experiment. We show that the inclusion of noise leads to systematic errors in the ability of these programs to measure expression, including systematic underestimates of transcript abundance levels and large increases in the number of false-positive genes and transcripts. Our results also suggest that alignment-free computational methods sometimes fail to detect transcripts expressed at relatively low levels.

Funder

National Science Foundation

National Institutes of Health

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3