A personalized, multi-omics approach identifies genes involved in cardiac hypertrophy and heart failure

Author:

Santolini MarcORCID,Romay Milagros C.,Yukhtman Clara L.,Rau Christoph D.,Ren Shuxun,Saucerman Jeffrey J.,Wang Jessica J.,Weiss James N.,Wang Yibin,Lusis Aldons J.,Karma Alain

Abstract

AbstractIdentifying genes underlying complex diseases remains a major challenge. Biomarkers are typically identified by comparing average levels of gene expression in populations of healthy and diseased individuals. However, genetic diversities may undermine the effort to uncover genes with significant but individual contribution to the spectrum of disease phenotypes within a population. Here we leverage the Hybrid Mouse Diversity Panel (HMDP), a model system of 100+ genetically diverse strains of mice exhibiting different complex disease traits, to develop a personalized differential gene expression analysis that is able to identify disease-associated genes missed by traditional population-wide methods. The population-level and personalized approaches are compared for isoproterenol(ISO)-induced cardiac hypertrophy and heart failure using pre- and post-ISO gene expression and phenotypic data. The personalized approach identifies 36 Fold-Change (FC) genes predictive of the severity of cardiac hypertrophy, and enriched in genes previously associated with cardiac diseases in human. Strikingly, these genes are either up- or down-regulated at the individual strain level, and are therefore missed when averaging at the population level. Using insights from the gene regulatory network and protein-protein interactome, we identify Hes1 as a strong candidate FC gene. We validate its role by showing that even a mild knockdown of 20-40% of Hes1 can induce a dramatic reduction of hypertrophy by 80-90% in rat neonatal cardiac cells. These findings emphasize the importance of a personalized approach to identify causal genes underlying complex diseases as well as to develop personalized therapies.SignificanceA traditional approach to investigate the genetic basis of complex diseases is to look for genes with a global change in expression between diseased and healthy individuals. Here, we investigate individual changes of gene expression by inducing heart failure in 100 strains of genetically distinct mice. We find that genes associated to the severity of the disease are either up- or down-regulated across individuals and are therefore missed by a traditional population level approach. However, they are enriched in human cardiac disease genes and form a coregulated module strongly interacting with a cardiac hypertrophic signaling network in the human interactome. Our analysis demonstrates that individualized approaches are crucial to reveal all genes involved in the development of complex diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Genetics of Coronary Heart Disease;Genetic Causes of Cardiac Disease;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3