Torso-like is a component of the hemolymph and regulates the insulin signalling pathway in Drosophila

Author:

Henstridge Michelle A.,Aulsebrook Lucinda,Koyama TakashiORCID,Johnson Travis K.,Whisstock James C.,Tiganis Tony,Mirth Christen K.,Warr Coral G.

Abstract

ABSTRACTIn Drosophila key developmental transitions are governed by the steroid hormone ecdysone. A number of neuropeptide-activated signalling pathways control ecdysone production in response to environmental signals, including the insulin signalling pathway, which regulates ecdysone production in response to nutrition. Here, we find that the Membrane Attack Complex/Perforin-like protein Torso-like, best characterised for its role in activating the Torso receptor tyrosine kinase in early embryo patterning, also regulates the insulin signalling pathway in Drosophila. We previously reported that the small body size and developmental delay phenotypes of torso-like null mutants resemble those observed when insulin signalling is reduced. Here we report that, in addition to growth defects, torso-like mutants also display metabolic and nutritional plasticity phenotypes characteristic of mutants with impaired insulin signalling. We further find that in the absence of torso-like the expression of insulin-like peptides is increased, as is their accumulation in the insulin-producing cells. Finally, we show that Torso-like is a component of the hemolymph and that it is required in the prothoracic gland to control developmental timing and body size. Taken together, our data suggest that the secretion of Torso-like from the prothoracic gland influences the activity of insulin signalling throughout the body in Drosophila.ARTICLE SUMMARYIn many animals distinct developmental transitions are crucial for the coordinated progression from the juvenile stage to adulthood. In Drosophila, the transition from an immature larva into a reproductively mature adult is controlled by the steroid hormone ecdysone. Several neuropeptide-activated signalling pathways, including the insulin signalling pathway, regulate ecdysone production in response to environmental cues. Here we find that the perforin-like protein Torso-like regulates the insulin signalling pathway. We show that Torso-like is secreted into circulation where it acts to influence insulin-like peptide activity, revealing a novel mechanism for the regulation of insulin signalling in Drosophila.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3