Identification of erythroid cell positive blood transcriptome phenotypes associated with severe respiratory syncytial virus infection

Author:

Rinchai Darawan,Altman Matthew B,Konza Oceane,Hässler Signe,Martina Federica,Toufiq Mohammed,Garand Mathieu,Kabeer Basirudeen,Palucka Karolina,Mejias Asuncion,Ramilo Octavio,Bedognetti Davide,Mariotti-Ferrandiz Encarnita,Klatzmann David,Chaussabel Damien

Abstract

ABSTRACTBiomarkers to assess the severity of acute respiratory syncytial virus (RSV) infection are needed. We conducted a meta-analysis of 490 unique profiles from six public RSV blood transcriptome datasets. A repertoire of 382 well-characterized transcriptional modules was used to define dominant host responses to RSV infection. The consolidated RSV cohort was stratified according to four traits: “interferon response” (IFN), “neutrophil-driven inflammation” (Infl), “cell cycle” (CC), and “erythrocytes” (Ery). Eight prevalent blood transcriptome phenotypes were thus identified. Among those three Ery+ phenotypes comprised higher proportions of patients requiring intensive care. We posit that the erythrocyte module is linked to an overabundance of immunosuppressive erythroid cells that might underlie progression to severe RSV infection. These findings outline potential priority areas for biomarker development and investigations into the immune biology of RSV infection. The approach that was employed here will also permit to delineate prevalent blood transcriptome phenotypes in other settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3