Abstract
AbstractMendelian Randomization (MR) analysis is increasingly popular for testing the causal effect of exposures on disease outcomes using data from genome-wide association studies. In some settings, the underlying exposure, such as systematic inflammation, may not be directly observable, but measurements can be available on multiple biomarkers, or other types of traits, that are co-regulated by the exposure. We propose method MRLE, which tests the significance for, and the direction of, the effect of a latent exposure by leveraging information from multiple related traits. The method is developed by constructing a set of estimating functions based on the second-order moments of summary association statistics, under a structural equation model where genetic variants are assumed to have indirect effects through the latent exposure and potentially direct effects on the traits. Simulation studies showed that MRLE has well-controlled type I error rates and increased power compared to single-trait MR tests under various types of pleiotropy. Applications of MRLE using genetic association statistics across five inflammatory biomarkers (CRP, IL-6, IL-8, TNF-α and MCP-1) provided evidence for potential causal effects of inflammation on increased risk of coronary artery disease, colorectal cancer and rheumatoid arthritis, while standard MR analysis for individual biomarkers often failed to detect consistent evidence for such effects.
Publisher
Cold Spring Harbor Laboratory