Evolutionary implications of recombination differences across diverging populations of Anopheles

Author:

Nelson Joel T.,Cornejo Omar E.ORCID,

Abstract

AbstractRecombination is one of the main evolutionary mechanisms responsible for changing the genomic architecture of populations; and in essence, it is the main mechanism by which novel combinations of alleles, haplotypes, are formed. A clear picture that has emerged across study systems is that recombination is highly variable, even among closely related species. However, it is only until very recently that we have started to understand how recombination variation between populations of the same species impact genetic diversity and divergence. Here, we used whole-genome sequence data to build fine-scale recombination maps for nine populations within two species of Anopheles, Anopheles gambiae and Anopheles coluzzii. The genome-wide recombination averages were on the same order of magnitude for all populations except one. Yet, we identified significant differences in fine-scale recombination rates among all population comparisons. We report that effective population sizes, and presence of a chromosomal inversion has major contribution to recombination rate variation along the genome and across populations. We identified over 400 highly variable recombination hotspots across all populations, where only 9.6% are shared between two or more populations. Additionally, our results are consistent with recombination hotspots contributing to both genetic diversity and absolute divergence (dxy) between populations and species of Anopheles. However, we also show that recombination has a small impact on population genetic differentiation as estimated with FST. The minimal impact that recombination has on genetic differentiation across populations represents the first empirical evidence against recent theoretical work suggesting that variation in recombination along the genome can mask or impair our ability to detect signatures of selection. Our findings add new understanding to how recombination rates vary within species, and how this major evolutionary mechanism can maintain and contribute to genetic variation and divergence within a prominent malaria vector.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3